
ar
X

iv
:2

40
4.

08
07

0v
1

 [
cs

.D
C

]
 1

1
A

pr
 2

02
4

Byzantine Reliable Broadcast with Low Communication and

Time Complexity

THOMAS LOCHER, DFINITY, Switzerland

Byzantine reliable broadcast is a fundamental problem in distributed computing, which has been studied ex-

tensively over the past decades. State-of-the-art algorithms are predominantly based on the approach to share

encoded fragments of the broadcast message, yielding an asymptotically optimal communication complexity

when the message size exceeds the network size, a condition frequently encountered in practice. However,

algorithms following the standard coding approach incur an overhead factor of at least 3, which can already

be a burden for bandwidth-constrained applications. Minimizing this overhead is an important objective with

immediate benefits to protocols that use a reliable broadcast routine as a building block.

This paper introduces a novel mechanism to lower the communication and computational complexity. Two

algorithms are presented that employ this mechanism to reliably broadcast messages in an asynchronous

network where less than a third of all nodes are Byzantine. The first algorithm reduces the overhead factor to

2 and has a time complexity of 3 if the sender is honest, whereas the second algorithm attains an optimal time

complexity of 2 with the same overhead factor in the absence of equivocation. Moreover, an optimization for

real-world implementations is proposed, reducing the overhead factor to 3/2 under normal operation. Lastly,

a lower bound is proved that an overhead factor lower than 3/2 cannot be achieved for a relevant class of

reliable broadcast algorithms.

CCS Concepts: • Computer systems organization → Fault-tolerant network topologies; • Theory of

computation→ Distributed algorithms.

Additional Key Words and Phrases: asynchronous networks, reliable broadcast, communication complexity

1 INTRODUCTION

The goal of Byzantine reliable broadcast is to disseminate a message efficiently and reliably despite
the presence of Byzantine nodes that may interfere with the protocol execution in arbitrary ways.
A reliable broadcast routine is a powerful primitive with a broad range of applications including
asynchronous atomic broadcast [15, 18, 19, 21, 27], distributed key generation [2, 12, 20], secure
data replication [8], and secret sharing [26]. Moreover, Byzantine reliable broadcast plays a piv-
otal role in Byzantine fault-tolerant consensus protocols where message dissemination is treated
separately from message ordering to improve throughput [10].
The first Byzantine reliable broadcast algorithm is due to Bracha [6]. While it is elegant in its

simplicity, its main drawback is that the message< is broadcast by every node during the execu-
tion of the algorithm, i.e., $ (|< |=2) bits are sent overall, where |< | denotes the size of< in bits
and = is the number of nodes in the network. In the seminal paper by Cachin and Tessaro [9], this
bound was improved to $ (|< |= + ^=2 log(=)) bits using erasure coding, where ^ is the output size
of a collision-resistant hash function. Since each node must receive the message in a successful
broadcast, this result is asymptotically optimal if |< | ∈ Ω(^= log(=)). Subsequent work has pri-
marily focused on getting closer to the lower bound of Ω(|< |= +=2) [1, 4, 11, 22, 23]. These pieces
of work follow the blueprint laid out by Cachin and Tessaro and augment it with error-correction
and cryptographic primitives to achieve better asymptotic bounds.
Curiously, there is little work onminimizing the constant in the$ (|< |=) term, although it likely

dominates the actual bandwidth consumption in practice and is therefore crucial for real-world
applications. The design by Cachin and Tessaro is based on a (=, C +1)-erasure code, where C < =/3
is the largest number of nodes that may exhibit Byzantine behavior. In this design, nodes broadcast
encoded fragments of size |< |/(C + 1) ≈ 3|< |/= instead of broadcasting<, sending at least 3|< |=

Author’s address: Thomas Locher, DFINITY, Zurich, Switzerland, thomas.locher@dfinity.org.

http://arxiv.org/abs/2404.08070v1

2 Locher

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140 160

T
im

e
[m

s]

Network size

decode (n,t+1)
decode (n,2t+1)
encode (n,t+1)

encode (n,2t+1)

Fig. 1. Given an input of size 1MiB, encoding and decoding times for erasure codes with parameters (=, C +1)

and (=, 2C + 1) are shown for different network sizes. The circles and bars mark the averages and the 5th and

95th percentiles, respectively, of the measured encoding and decoding times over 1000 runs.

bits altogether. An overhead factor of 3—compared to the ideal scenario where each node receives
exactly |< | bits—may already prove too costly for applications with strict bandwidth constraints.
All schemes that follow this approach naturally inherit the overhead inherent in this design.

In this paper, a mechanism is introduced that departs from this blueprint in order to reduce the
communication complexity, i.e., the number of bits that need to be exchanged in the worst case,
for large messages. The core idea is quite simple: a (=, 2C +1)-erasure code is used instead, reducing
the fragment size to |< |/(2C + 1) ≈ 3

2 |< |/=. This modification obviously reduces the cost of broad-
casting fragments; however, correctness is no longer given without additional changes because
some nodes may receive 2C + 1 fragments whereas others merely obtain C + 1 fragment, which is
not enough to recover the message. This problem is addressed by introducing the following step.
If a node with 2C + 1 fragments manages to reconstruct the message, it disseminates fragments
again but only to the C nodes from which no fragment was received. As we will see, this step is
sufficient to ensure correctness while keeping the communication complexity low.
As an added benefit, the transition from a (=, C + 1)-erasure code to a (=, 2C + 1)-erasure code

results in substantial performance improvements, both with respect to the encoding and decoding
of fragments. Figure 1 shows performance numbers when encoding/decoding a message of size
1MiB for various network sizes and the two different parameterizations. The experiments were
conducted on standard hardware using an optimized library1 for Reed-Solomon codes [24]. The
figure confirms the practicality of erasure coding due to its efficiency, exhibiting encoding and
decoding times in themillisecond range, and scalability with respect to the network size. Moreover,
the figure reveals that the encoding (decoding) time is lower by a factor of 2.2-2.4 (1.8-2.0) for all
network sizes when using an (=, 2C + 1)-erasure code. Another interesting property is that the
variance is also significantly lower, leading to more predictable encoding and decoding times.

The paper is organized as follows. The model is formally introduced in §2. A concrete algo-
rithm that makes use of the novel mechanism is presented in §3. Its communication complexity is
2|< |= plus a term independent of |< |. Given an honest (i.e., non-faulty) sender, each honest node
obtains the message after 3 rounds of communication. A natural question is whether there is an
algorithm with an overhead factor lower than 3 and that terminates in an optimal 2 rounds given
an honest sender. In §4, this question is answered in the affirmative by presenting an algorithm

1See https://github.com/AndersTrier/reed-solomon-simd.

https://github.com/AndersTrier/reed-solomon-simd

Byzantine Reliable Broadcast with Low Communication and Time Complexity 3

with this property and the same overhead factor if the sender does not equivocate. Otherwise, the
worst-case overhead factor is 5

2 with respect to the largest fragment size transmitted by honest
nodes. While the first algorithm only requires collision-resistant hash functions, the second algo-
rithm makes use of threshold signatures. Another aspect of practical relevance is the (worst-case)
storage requirement at each node. Both algorithms bound the required space to a small multiple
of a predetermined maximum message size. Practical considerations with the goal of reducing the
communication complexity further in real-world deployments and simplifying the implementa-
tion are discussed in §5. A key observation is that the overhead can be reduced to 3

2 during periods
of synchrony and in the absence of failures. In §6, a lower bound is presented, showing that an
overhead factor of 3

2 is optimal for a particular class of algorithms. Related work is summarized in
§7 before the paper concludes in §8.

2 MODEL

The considered network comprises = = 3C + 1 nodes, where C denotes the maximum number of
Byzantine nodes, which may deviate arbitrarily from any given protocol. The other 2C + 1 nodes
faithfully execute the given protocol and are called honest. Any two nodes can communicate di-
rectly over an authenticated channel by exchanging messages. Communication is assumed to be
asynchronous in the sense that the delivery of messages, while guaranteed, may be delayed indef-
initely. In this communication model, nodes cannot make any assumption about message delays,
neither about the time required until sent message arrive at their destinations nor about the time
that elapses until certain (expected) messages are received.
A nodemay send amessage to a single node or tomultiple nodes.When a node E sends amessage

to all nodes, we say that E broadcasts this message. A faulty node may fail to send messages as
specified in the protocol. The goal of reliable broadcast is to ensure, under some conditions, that
all honest nodes eventually deliver a certain message, i.e., mark it as the accepted outcome of the
reliable broadcast. The required properties of a reliable broadcast protocol are stated formally in
the following definition.

Definition 2.1 (Reliable broadcast). A reliable broadcast protocol is a distributed protocol to send
a message< from a specific node called the sender to all nodes with the following properties.

• Validity: If the sender is honest and broadcasts message<, then every honest node even-
tually delivers<.

• Agreement: If two honest node deliver messages< and<′, then< =<′.
• Integrity: Every honest node delivers at most one message<.
• Totality: If an honest node delivers message <, then all honest nodes eventually deliver
<.

In general, nodesmay engage in multiple reliable broadcasts in parallel. In this case, the integrity
condition effectively requires that messages are attributable to a uniquely identifiable execution
context. To this end, we define that every reliable broadcast execution has a unique identifier. In
the following, we assume that every message implicitly contains an identifier and that each node
runs a separate instance of the protocol for each identifier. The sender for a particular execution
context is assumed to be globally known.
As mentioned above, the objective is to reliably broadcast some message<, where the notation

|< | is used to denote the size of themessage in bits. Instead of sending<, the algorithms introduced
in §3 and §4 send fragments of<, which can be either chunks of< itself or encoded data derived
from<. Without loss of generality, we assume that there is some upper bound ℓ<0G on the message
size, which in turn limits the fragment size. State-of-the-art algorithms use either erasure codes,
which can handlemissing data, or error-correcting codes, which support the correction of erroneous

4 Locher

data. The algorithms in this paper exclusively use an (=, :)-erasure codes with optimal reception
efficiency, i.e., exactly : out of = symbols are sufficient to reconstruct a message of : symbols.
Throughout this paper, the parameters = and : correspond to the total number of nodes and the
number of honest nodes, i.e., : ≔ 2C + 1. We assume that each node has access to the routine

get_fragments that takes a message < as input and returns a list of = fragments of size |< |
:

=

|< |
25 +1 <

3
2
|< |
=

each. Furthermore, the nodes use the routine recover_message to recover< given

any subset � of the = fragments of size |� | ≥ : = 2C + 1. This routine is assumed to always return
some message, which may simply be a bit string of zeroes in case of an error, e.g., when the input
contains fragments of different sizes.
In addition to fragments, the nodes also send hashes, identifiers, and, in the case of the algorithm

presented in §4, also signatures. The hashes are assumed to be cryptographically strong in the
sense that it is infeasible to find hash collisions (except with negligible probability). Naturally, it
is also assumed that it is computationally infeasible to spoof signatures. Since the cryptographic
properties only hold for hashes and signatures of a certain minimum size, we introduce a security
parameter ^ and define that the size of all data types other than fragments is bounded by $ (^).
Reliable broadcast algorithms are evaluated against multiple complexity measures. For a specific

number= of nodes, number C of Byzantine nodes, andmessage size ℓ , the communication complexity
C(=, C, ℓ) of an algorithm is the total number of bits sent by all honest nodes in theworst case. In the
case of a Byzantine sender that sends fragments of different sizes, we define that ℓ is the message
size corresponding to the largest fragment sent by an honest node. Given that at least =ℓ bits need
to be transferred andwe are concernedwith the overhead for largemessages, the primary goal is to

minimize L(=, C) ≔ limℓ→∞
C(=,C,ℓ)

ℓ=
. Additionally, the time complexity of an algorithm is of great

practical importance, measuring the duration of an execution when normalizing the maximum
message delay to 1 time unit. According to Definition 2.1, an execution with a Byzantine sender
may never terminate. Therefore, we restrict our attention to the case where the sender is honest.
Due to the validity condition, this good-case time complexity must be bounded. Lastly, the space
complexity is considered as well, which is defined as the number of bits that any honest node stores
during the execution of the algorithm in the worst case.

3 ALGORITHM

3.1 Overview

The algorithm, referred to as A18C , effectively works as outlined in §1 with a few important addi-
tions. In the first step, the sender disseminates the fragments. The validity of fragments is verified
usingMerkle proofs (as in [9]). After validating the received fragment, each honest node broadcasts
a proposal to accept the message with the root hash in the received Merkle proof. The proposals
serve to keep the communication complexity low and ensure that the integrity property holds.
Honest nodes broadcast their fragments only if they receive at least 2C + 1 proposals for the cor-
responding root hash. Lastly, if an honest node receives at least 2C + 1 fragments and manages to
reconstruct the correct message, it first carries out the crucial step of sending the 9 Cℎ fragment to
node E 9 if it did not receive any fragment from E 9 to guarantee that the totality property holds in
case of a Byzantine sender before delivering the message.

3.2 Description

Algorithm A18C makes use of the routines get_fragments and recover_message introduced in
§2 to generate fragments of a given message and recover the message given at least 2C + 1 valid
fragments, respectively. Furthermore, it requires routines for Merkle tree operations, specifically,
get_merkle_root yields the Merkle root hash for a given set of fragments, get_merkle_proof

Byzantine Reliable Broadcast with Low Communication and Time Complexity 5

Algorithm 1 Algorithm A18C : Triggered actions at node E8 . Initially, � = ' = � = % = {}.

if reliable_broadcast(<) invoked and E8 = B4=34A then

(51, . . . , 5=) ≔ get_fragments(<)
ℎ ≔ get_merkle_root(51, . . . , 5=)
for E 9 ∈ + do

c 9 ≔ get_merkle_proof((51, . . . , 5=), 9)
send 5 A06<4=C (ℎ, 9, 59 , c 9) to E 9

if received 5 A06<4=C (ℎ, 9, 59 , c 9) from E: and (9 = 8 or 9 = :) then
if (|� (E:) | < 2 or ℎ ∈ � (E:)) and valid_merkle_proof(ℎ, 59 , 9 , c 9) then
� (E:) ≔ � (E:) ∪ {ℎ}, '(ℎ) ≔ '(ℎ) ∪ {E: }, � (ℎ, E 9) ≔ (59 , c 9)

if 8 = 9 and first fragment from E: = B4=34A then

broadcast ?A>?>B0; (ℎ)

if received ?A>?>B0; (ℎ) from E: then

if |� (E:) | < 2 or ℎ ∈ � (E:) then

� (E:) ≔ � (E:) ∪ {ℎ}, % (ℎ) ≔ % (ℎ) ∪ {E: }

returns the Merkle proof for a specific fragment, and valid_merkle_proof indicates whether a
given Merkle proof is valid.
Each node executing A18C locally maintains the data structures � , ', � , and % per execution

context. Let F , Π, and H denote the set of all possible fragments, Merkle proofs, and hashes,
respectively. The hash map � : H × + → F × Π stores the fragment 59 ∈ F and Merkle proof
c 9 ∈ Π of node E 9 for the message with the root hash ℎ ∈ H . If this fragment is locally available,
then � (ℎ, E 9) = (59 , c8), and � (ℎ, E 9) = ⊥ otherwise. This hash map is used to collect fragments

with the goal of eventually recovering the corresponding message. The hash map ' : H → 2+

stores the nodes from which a fragment for root hash ℎ has been obtained. This hash map is
needed to determine which nodes may still be missing their fragments once a node is able to
recover the message. Conversely, for any node E , the hash map � : + → 2H contains the set
of hashes for which a proposal or fragment was received from node E . The purpose of this data
structure is to bound both the communication and space complexity. Lastly, % : H → 2+ indicates
which nodes have proposed the delivery of the message associated with the root hash ℎ. The
collected proposals are used to ensure that only fragments with sufficient support are broadcast.
All hash maps are initially empty. In addition to the hash maps, each node further uses the Boolean
variable 3>=4 , initially 5 0;B4 , to capture the information whether the execution has terminated,
either with or without the delivery of a message. In the latter case, the totality condition implies
that no honest node will deliver a message for this execution. Let further H ≔ ∪E∈+� (E) and
ℎ<0G ≔ argmaxℎ∈H |% (ℎ) |, breaking ties arbitrarily if no single hash received the most proposals.

We distinguish between “triggered actions”, which are executed when a function is invoked or
a message is received, and “state-based actions”, which occur when some conditions hold for the
local state. This separation facilitates the description and analysis of the algorithm’s properties.
The triggered actions are formally stated in Algorithm 1 and discussed next.

Given a message <, a reliable broadcast is triggered by invoking the routine
reliable_broadcast at node E8 = B4=34A , which performs the standard steps of generat-
ing = fragments 51, . . . , 5= , computing the Merkle root hash ℎ, and then transmitting the fragment
message 5 A06<4=C (ℎ, 9, 59 , c 9), which contains the corresponding Merkle proof c 9 , to E 9 for all
9 ∈ {1, . . . , =}. A node E8 only accepts a received message 5 A06<4=C (ℎ, 9, 59 , c 9) from some node E:

6 Locher

Algorithm 2 Algorithm A18C : State-based actions at node E8 . Initially, � = ' = % = {}, 3>=4 =

5 0;B4 . Let ℎ<0G ≔ argmaxℎ∈H |% (ℎ) |.

if |% (ℎ<0G) | ≥ 2C + 1 and not broadcast (58 , c8) ≔ � (ℎ<0G , E8) ≠ ⊥ before then
broadcast 5 A06<4=C (ℎ<0G , 58 , 8, c8)

if (|� (ℎ<0G) | ≥ C + 1 and not broadcast ?A>?>B0; (ℎ<0G) before then
broadcast ?A>?>B0; (ℎ<0G)

if |% (ℎ<0G) | ≥ 2C + 1 and |� (ℎ<0G) | ≥ 2C + 1 and not 3>=4 then

< ≔ recover_message(� (ℎ<0G))

(51, . . . , 5=) ≔ get_fragments(<)
ℎ ≔ get_merkle_root(51, . . . , 5=)

if ℎ = ℎ<0G then

for E 9 ∈ + \ '(ℎ<0G)

Execute deliverydo

c 9 ≔ get_merkle_proof((51, . . . , 5=), 9)
send 5 A06<4=C (ℎ<0G , 9 , 59 , c 9) to E 9

deliver(<)

3>=4 ≔ CAD4

under the following conditions. First, the sender E: must have sent the fragment of the recipient
E8 (i.e., 9 = 8) or its own fragment (i.e., 9 = :). Second, the sender has not sent messages for two
Merkle root hashes other than ℎ before (formally, |� (E:) | < 2 or ℎ ∈ � (E:)) and, lastly, the
Merkle proof c 9 in the received message is valid. If all conditions are met, the hash maps � and
' are updated by adding ℎ and E: , respectively, and the fragment and Merkle proof are stored
(� (ℎ, E 9) ≔ (59 , c 9)). In the final step, if the recipient received its fragment (i.e., 9 = 8) and it
is the first fragment received from the dedicated sender (i.e., E: = B4=34A), then E8 broadcasts
?A>?>B0; (ℎ). Whenever a proposal of the form ?A>?>B0; (ℎ) is received from node E: , it is again
only accepted if E: did not send messages associated with two other hashes before, in which case
ℎ is added to � (E:) and E: is added to % (E:).

Algorithm 2 describes the state-based actions of algorithm A18C . An honest node E8 broadcasts
its fragment 58 , at most once, after collecting 2C + 1 proposals for the corresponding Merkle root
hash ℎ. By contrast, a node E8 broadcasts a proposal for a specific root hash ℎ not only when it
receives its fragment from B4=34A but also when at least C +1 fragments for the root hash ℎ = ℎ<0G

have been received and E8 has not broadcast the proposal before. Lastly, if a node E8 receives at least
2C+1 fragments and proposals forℎ<0G , it recovers themessage< and, additionally, recomputes the
fragments and the corresponding root hash. If the computed hash matchesℎ<0G , node E8 concludes
that the fragments are valid and the message< can be delivered. In this case, E8 first recomputes
the Merkle proof c 9 and sends 5 A06<4=C (ℎ<0G , 9 , 59 , c 9) to each E 9 ∈ + \ '(ℎ<0G) before calling
deliver(<) to deliver the message. Note that 3>=4 is set to CAD4 after executing these steps even
if ℎ ≠ ℎ<0G because it is computationally infeasible to find fragments such that equality holds for
some subsets of fragments of size 2C + 1.

3.3 Analysis

In this section, we prove the correctness of A18C as well as its communication, time, and space
complexity. A series of lemmas is used to simplify the proof structure. The first lemma is con-
cerned with the fragments that honest nodes broadcast, showing that the proposal mechanism
successfully ensures that honest nodes only broadcast fragments for one specific root hash.

Byzantine Reliable Broadcast with Low Communication and Time Complexity 7

Lemma 3.1. If honest nodes E and E ′ broadcast fragments for root hashes ℎ and ℎ′, then ℎ = ℎ′.

Proof. Without loss of generality, let ℎ be the first hash for which 2C + 1 proposals are received
at some node E . Thus, there are at least C+1 honest nodes that received their fragments from B4=34A

and then broadcast their first proposal for root hash ℎ.
Let E ′ be the first node that broadcasts a fragment for a hash ℎ′ ≠ ℎ. Since it must hold that

|% (ℎ′) | ≥ 2C + 1 at node E ′, there must be at least C + 1 honest nodes that broadcast the proposal
for root hash ℎ′. Consequently, there must be an honest node E∗ that first proposed ℎ and then
ℎ′. However, E∗ only sends a proposal for ℎ′ if |� (ℎ′) | ≥ C + 1 according to Algorithm 2, which
implies that it must have received a fragment for root hash ℎ′ from an honest node before. This is
a contradiction to the assumption that E ′ is the first node that broadcasts such a fragment. �

Since algorithmA18C imposes restrictive rules for the acceptance of received messages, we must
show that honest nodes always accept messages from other honest nodes regardless of the mes-
sages of Byzantine nodes.

Lemma 3.2. If an honest node E sends a proposal or fragment message to an honest node E ′, then E ′

accepts and processes the received message.

Proof. According to Algorithm 1, E ′ accepts messages associated with at most two different
hashes for any sender E . After an initial proposal for some root hash ℎ, E may send a second
proposal for ℎ′ if |� (ℎ′) | >= C + 1, i.e., there is at least one honest node that has broadcast a
fragment for root hash ℎ′. Assume that E sends another proposal for a different root hash ℎ′′ ,
which again implies that at least one honest node must have broadcast a fragment for this root
hash, a contradiction to Lemma 3.1.
Regarding the transmission of fragments, Lemma 3.1 also implies that an honest node only sends

fragments for one root hash. Assume that E sends fragments for a root hash ℎ′′ that differs from
the hashes ℎ and ℎ′ for which it sends proposals. In this case, E must have received at least C + 1
fragments for one of the root hashes ℎ or ℎ′ . Hence it follows that an honest node broadcast a
fragment for a root hash other than ℎ′′, again contradicting Lemma 3.1. �

An important criterion for the totality property is that all honest eventually manage to get
sufficiently many fragments of a message < and proposals for the corresponding root hash if
there is an honest node that delivers<. The last lemma states that this is indeed the case.

Lemma 3.3. If an honest node E delivers< with root hash ℎ, all honest nodes will eventually store
at least 2C + 1 proposals for ℎ and 2C + 1 fragments of<.

Proof. Assume that E delivers< with root hashℎ. Since |� (ℎ) | ≥ 2C +1, E received fragments of
< from at least C+1 honest nodes, i.e., every honest node eventually receives at least C+1 fragments
of<. As a result, every honest node broadcasts ?A>?>B0; (ℎ) at some point and thus |% (ℎ) | ≥ 2C + 1
eventually holds at all honest nodes.
Node E adds all nodes from which it received fragments for root hash ℎ to the set '(ℎ). For any

node E ′ ∈ '(ℎ) it holds that E ′ either sent its own fragment or E’s fragment. However, the latter
case also implies that E ′ must have its own fragment. According to Algorithm 1, E sends fragment
59 to E 9 for all E 9 ∈ + \ '(ℎ), guaranteeing that the remaining nodes eventually receive and, due
to Lemma 3.2, store their fragments as well. Thus, it eventually holds that |% (ℎ) | ≥ 2C + 1 and
� (ℎ) ≠ ⊥ at all honest nodes, causing them to broadcast their fragments. Consequently, every
honest node will eventually receive fragments of< from at least 2C + 1 nodes. �

We are now in the position to prove the following main result.

8 Locher

Theorem 3.4. AlgorithmA18C implements reliable broadcast in the asynchronous communication
model with C < =/3 Byzantine nodes.

Proof. The four conditions of reliable broadcast are proved separately.
Validity: If the sender E of a message< with root hash ℎ is honest, it sends the fragment 59 to

E 9 for all E 9 ∈ + . Subsequently, every honest nodes broadcasts ?A>?>B0; (ℎ). Since all honest nodes
eventually receive at least 2C +1 proposals for hash ℎ (and only for hash ℎ), they all broadcast their
fragments. Thus, eventually � (ℎ) | ≥ 2C +1 and |% (ℎ) | ≥ 2C +1 holds at all honest nodes, triggering
the delivery of<.
Agreement: Assume for the sake of contradiction that honest nodes E and E ′ deliver distinct

messages< and<′ with root hashes ℎ and ℎ′, respectively. Since |� (ℎ) | ≥ 2C + 1 at E and |� (ℎ′) | ≥

2C+1 at E ′, theremust be honest nodes that have broadcast fragments forℎ andℎ′ , which contradicts
Lemma 3.1.
Integrity: Lemma 3.1 implies that there can only be sufficiently many fragments for at most

one hash and hence at most one message can be delivered.
Totality: Let E be a node that delivers a message< with root hash ℎ. Due to Lemma 3.3, it holds

eventually that |� (ℎ) | ≥ 2C + 1 and |% (ℎ′) | ≥ 2C + 1 at all honest nodes. Since E managed to verify
the correctness of the fragments and the corresponding root hash, the verification also succeeds
at all other nodes. Thus, all honest nodes eventually deliver<. �

The following theorem states the communication complexity of algorithm A18C .

Theorem 3.5 (Communication complexity). It holds for algorithm A18C that L(=, C) = 2.

Proof. Let |5 | ≔ 3
2 |< |/= + $ (^ log(=)) denote the size of the largest fragment message sent

by an honest node. If the sender is honest, |5 | corresponds to the size of a fragment message
containing a valid fragment of message<.
The sender may send fragment messages to all other nodes for a total of at most (= − 1) |5 |

bits. Each honest node may broadcast one fragment message containing its fragment and at most
two proposals of size $ (^). After reconstructing the message<, an honest node further sends a
fragment message containing 59 to all E 9 ∈ + \ '(ℎ), where |+ \ '(ℎ) | ≤ C < =/3. Not counting
messages that nodes send to themselves, the communication complexity C(=, C, |< |) is therefore
upper bounded by

(= − 1) |5 | + = · (= − 1 + C) |5 | +$ (^=2) < 2= |< | +$ (^=2 log(=)),

and therefore L(=, C) = lim |< |→∞
1

= |< |
C(=, C, |< |) = 2. �

As stated in §2, we consider the good-case time complexity with an honest sender. The following
theorem states the time complexity of A18C for this case.

Theorem 3.6 (Time complexity). If the sender is honest, A18C has a time complexity of 3.

Proof. If the sender is honest, all honest nodes receive their fragments and send the proposal
for the corresponding root hash after at most 1 time unit. Thus, after at most 2 time units, all
honest nodes get at least 2C + 1 proposals, triggering the broadcasting of fragments. After at most
3 time units, the honest nodes receive the fragments from all honest nodes and deliver<. �

If the sender is Byzantine, an honest node may still deliver< eventually. It is easy to see that it
takes at most 3 time units for every honest node to deliver after the first honest node delivers<.
As far as the space complexity is concerned, recall that ℓ<0G denotes the largest permissible

message size, which is a lower bound on the space complexity. Given this bound, the following
result shows that honest nodes require little additional storage space.

Byzantine Reliable Broadcast with Low Communication and Time Complexity 9

Theorem 3.7 (Space complexity). Algorithm A18C has a space complexity of 2ℓ<0G +$ (=^).

Proof. While honest nodes send fragments for at most one root hash, Byzantine nodes cannot
send fragments for more than two hashes, resulting in a total of at most C · 2 + (2C + 1) · 1 <

4
3=

fragments of size 3
2 ℓ<0G /= each. Thus, the space required to store received fragments is upper

bounded by 2ℓ<0G . The other data structures merely contain identifiers and hashes of size $ (^).
Since they may contain entries for at most 2 hashes per node, it follows that the total size of these
data structures is bounded by $ (=^). �

It is worth pointing out that the space complexity can be lowered to 3
2 ℓ<0G+$ (=^) by introducing

the rule that received fragments for different hashes from the same node are rejected. This rule is
omitted from Algorithm 1 for ease of exposition.

4 VARIANT WITH THRESHOLD SIGNATURES

4.1 Overview

In this section, a variant of A18C , called AB86, is introduced with an optimal time complexity of
2 while still guaranteeing that L(=, C) < 3. The challenge is that this time complexity cannot be
reached when sending proposals to agree on a root hash first before sending fragments. However,
if fragments are broadcast right away, a Byzantine sender may send fragments for different root
hashes to different nodes. Naturally, honest nodes cannot simply broadcast any received fragments
without an adverse effect on the communication complexity.

AlgorithmAB86 addresses this challenge by using threshold signatures, i.e., we assume that each
node has the keying material to threshold-signmessages and that every node can verify the validity
of signatures of all nodes. At least 2C+1 threshold signatures are required to create a valid signature.
The proposals of A18C are replaced by messages containing a root hash and a threshold signature
or a full signature. The crucial advantage is that a (full) signature serves as proof that the sender
has received threshold signatures from 2C+1 nodes, ensuring that the execution canmake progress
whenever an honest nodes meets the conditions to deliver<.

4.2 Description

Algorithm AB86 uses signed proposal messages of the form ?A>?>B0; (ℎ,f), where f is either
the threshold signature of ℎ of a particular node or it is a signature of ℎ derived from at least
2C + 1 threshold signatures. Note that it is a signature of ℎ and the identifier in practice in order
to tie the signature to a particular execution. The algorithm still uses the hash maps � , � , and '.
Threshold signatures are collected in the hash map (: H ×+ → S, where S denotes the set of all
possible signatures. We further define that ((ℎ) ≔ ∪E∈+ ((ℎ, E). In this section, ℎ<0G is defined as
ℎ<0G ≔ argmaxℎ∈H |((ℎ) |. In addition to 3>=4 , each node further stores ℎ∗, the root hash of the
message that will be delivered if set (initially, ℎ∗ = ⊥).
The steps of algorithm AB86 for triggered actions are shown in Algorithm 3. When

reliable_broadcast is invoked, exactly the same steps as in Algorithm 1 are executed. A mes-
sage 5 A06<4=C (ℎ, 9, 59 , c 9) is handled the same way as in A18C with the exception that ℎ is signed
and both ?A>?>B0; (ℎ,f8) and 5 A06<4=C (ℎ, 58 , 8, c8) are broadcast if it is the first (valid) fragment
received from B4=34A . When receiving ?A>?>B0; (ℎ,f) from some node E: , the action depends on
f . If it is a valid signature, ℎ∗ is set to ℎ. Otherwise, if it is a valid threshold signature and � (E:)

does not contain two hashes different from ℎ, then ℎ is added to � (E:) and ((ℎ, E:) is set to f .
The state-based actions at node E8 are shown in Algorithm 4. If at least 2C+1 threshold signatures

have been collected for some root hashℎ<0G , thenℎ
∗ is set toℎ<0G . Node E8 broadcasts its fragment

58 (with the Merkle proof c8) if ℎ
∗ is set, 58 is locally available, and it has not been broadcast before.

10 Locher

Algorithm 3 Algorithm AB86: Triggered actions at node E8 . Initially, � = ' = � = (= {} and
ℎ∗ = ⊥.

if reliable_broadcast(<) invoked and E8 = B4=34A then

Execute reliable_broadcast(<) of Algorithm 1

if received 5 A06<4=C (ℎ, 9, 59 , c 9) from E: and (9 = 8 or 9 = :) then
if (|� (E:) | < 2 or ℎ ∈ � (E:)) and valid_merkle_proof(ℎ, 59 , 9 , c 9) then
� (E:) ≔ � (E:) ∪ {ℎ}, '(ℎ) ≔ '(ℎ) ∪ {E: }, � (ℎ, E 9) ≔ (59 , c 9)

if 8 = 9 and first fragment from E: = B4=34A then

f8 ≔ threshold_sign(ℎ)

broadcast [?A>?>B0; (ℎ,f8), 5 A06<4=C (ℎ, 58, 8, c8)]

if received ?A>?>B0; (ℎ,f) from E: then

if valid_multi_sig(ℎ,f) then

ℎ∗ ≔ ℎ

else if ((|� (E:) | < 2 or ℎ ∈ � (E:)) and valid_sig(ℎ,E: , f) then
� (E:) ≔ � (E:) ∪ {ℎ}, ((ℎ, E:) ≔ f

Lastly, if ℎ∗ ≠ ⊥ and |� (ℎ∗) | ≥ 2C + 1, E8 computes the signature and broadcasts the corresponding
proposal before executing the same delivery steps as in Algorithm 2.

4.3 Analysis

It is evident from the description of algorithmAB86 that honest nodes must set ℎ∗ to the same hash
as otherwise the integrity property may be violated. The following lemma states that honest nodes
indeed cannot set ℎ∗ to different hashes.

Lemma 4.1. If honest nodes set ℎ∗, they set it to the same hash.

Proof. According to Algorithm 3, only the first message from B4=34A is threshold-signed, i.e.,
every honest node provides a threshold signature for at most one hash. However, setting ℎ∗ to
some hash ℎ requires 2C + 1 threshold signatures of ℎ. If we assume that there are two different
hashes for which 2C +1 threshold signatures have been collected, there must be at least one honest
node that threshold-signed two different hashes, which contradicts the rule that honest nodes only
threshold-sign at most one hash. �

A Byzantine sender may send fragments for different root hashes to the honest nodes, causing
wasteful transmissions of fragments. However, algorithm AB86 ensures that the number of trans-
missions is bounded as the next lemma shows.

Lemma 4.2. Every honest node sends fragments for at most two different root hashes.

Proof. An honest node E8 broadcasts its fragment 58 for some root hash ℎ when receiving 58
from B4=34A . Apart from this transmission, according to Algorithm 3, E8 only sends fragments
associated with ℎ∗. Since ℎ∗ never changes once set, the claim follows. �

Since algorithm AB86 enforces similar restrictions for the acceptance of messages as algorithm
A18C , Lemma 3.2 holds for AB86 as well.

Lemma 4.3. Lemma 3.2 (“If an honest node E sends a proposal or fragment message to an honest
node E ′, then E ′ accepts and processes the received message.”) holds for AB86.

Byzantine Reliable Broadcast with Low Communication and Time Complexity 11

Algorithm 4 AlgorithmAB86: State-based actions at node E8 . Initially, � = ' = (= {}, ℎ∗ = ⊥, and
3>=4 = 5 0;B4 . Let ℎ<0G ≔ argmaxℎ∈H |((ℎ) |.

if |((ℎ<0G) | ≥ 2C + 1 and ℎ∗ = ⊥ then

ℎ∗ ≔ ℎ<0G

if ℎ∗ ≠ ⊥ and not broadcast (58 , c8) ≔ � (ℎ∗, 8) ≠ ⊥ before then
broadcast 5 A06<4=C (ℎ∗, 58 , 8, c8)

if ℎ∗ ≠ ⊥ and |� (ℎ∗) | ≥ 2C + 1 and not 3>=4 then

f ≔ compute_signature(((ℎ∗))

broadcast ?A>?>B0; (ℎ∗, f)

Execute delivery as in Algorithm 2

Proof. Algorithm AB86 and A18C share the property that messages for two different hashes
are accepted from any node. According to Algorithm 3, an honest node broadcasts a signature
and fragment message for the same hash ℎ when receiving its fragment from B4=34A . Algorithm 4
states that any further transmission of a signature or fragment message must be for hash ℎ∗ ≠ ⊥.
Since ℎ∗ never changes when set, honest nodes send messages for at most 2 hashes. �

Algorithm AB86 depends on the same mechanism to ensure totality as A18C and therefore the
following variant of Lemma 3.3 holds.

Lemma 4.4. If an honest node delivers< with root hash ℎ, all honest nodes will eventually store at
least 2C + 1 fragments of< and set ℎ∗ to ℎ.

Proof. The same argument as for algorithmA18C applies, which proves that every honest node
gets its fragment eventually after an honest node E has delivered a message < for some hash ℎ,
which it accepts and stores due to Lemma 4.3. Since E must have computed and broadcast a valid
signature f , it eventually holds at all honest nodes that ℎ∗ = ℎ. According to Lemma 4.1, honest
nodes all set ℎ∗ to the same value. Consequently, every honest node will eventually broadcast its
fragment, Thus, every honest node will eventually have at least 2C + 1 fragments of<. �

As in §3, the first main result is that algorithm AB86 is a correct reliable broadcast algorithm.

Theorem 4.5. AlgorithmAB86 implements reliable broadcast in the asynchronous communication
model with C < =/3 Byzantine nodes.

Proof. The four conditions of reliable broadcast are again proved in sequence.
Validity: If the sender E of a message< with root hashℎ is honest, it sends 59 to E 9 for all E 9 ∈ + .

Every honest node E 9 broadcasts its fragment and threshold signature and, consequently, receives
at least 2C + 1 signatures and fragments eventually. Subsequently, every honest node computes the
signature f , sets ℎ∗ ≔ ℎ, and proceeds to deliver<.
Agreement: If two honest nodes E and E ′ deliver different messages< and<′, they must have

set ℎ∗ to different hashes, a contradiction to Lemma 4.1.
Integrity: Due to Lemma 4.1, every honest node delivers at most one message.
Totality: If an honest node E delivers a message< with root hash ℎ, it eventually holds at all

honest nodes that ℎ∗ = ℎ and |� (ℎ∗) | ≥ 2C + 1 due to Lemma 4.4. Since E managed to verify the
correctness of the fragments and the root hash, it holds again that the verification must succeed
at other nodes as well. Every honest node delivers< after the successful verification. �

12 Locher

Compared toA18C , the communication complexity of algorithmAB86 is worse, which appears to
be inevitable given that the nodes must broadcast fragments without delay to achieve an optimal
time complexity. However, the following lemma states that even a Byzantine sender cannot induce
many (wasteful) transmissions of fragments.

Lemma 4.6. At most C honest nodes send fragments for 2 different root hashes.

Proof. Let (denote the set of honest nodes that send fragments for more than one root hash.
Algorithm 3 dictates that an honest node only sends another fragment when ℎ∗ ≠ ⊥. If there
are C ′ ≤ C Byzantine nodes in the execution, at least 2C + 1 − C ′ honest nodes must receive their
fragments for hash ℎ∗ in order to obtain a signature f for this hash. Since none of these nodes
sends fragments for other root hashes, we get that |(| ≤ 3C + 1 − (2C + 1 − C ′) − C ′ = C . �

As the following theorem shows, algorithm AB86 achieves an overhead factor that tends to 5/2
for large messages.

Theorem 4.7 (Communication complexity). It holds for algorithm AB86 that L(=, C) = 5
2 .

Proof. The dissemination of fragments by the sender requires at most (=−1) |5 | bits, where |5 |
again denotes the size of the largest fragment message sent by an honest node. Due to Lemma 4.6,
at most C honest nodes broadcast fragments twice, and the other other honest nodes broadcast at
most one fragment. Additionally, each node sends $ (^=) bits for the signed proposal messages
and 59 to all E 9 ∈ + \ '(ℎ), where |+ \ '(ℎ) | ≤ C < =/3 as before. Hence it follows that C(=, C, |< |)

is at most

(= − 1) |5 | + (2C + 1) (= − 1) |5 | + 2C (= − 1) |5 | + C (= − 1) |5 | +$ (^=2)

< (= − 1) |5 | +
5

3
=(= − 1) |5 | +$ (^=2) <

5

2
= |< | +$ (^=2 log(=)),

where the first inequality holds because (5C + 1) < 5
3 (3C + 1) = 5

3=. Thus, L(=, C) = 5
2 . �

It is worth noting that the communication complexity is only worse compared to A18C if the
sender deliberately transmits conflicting fragments, i.e., L(=, C) = 2 still holds otherwise. The
main advantage of AB86 over A18C is its superior time complexity.

Theorem 4.8 (Time complexity). If the sender is honest, AB86 has a time complexity of 2.

Proof. If the sender is honest, all honest nodes receive their fragments within 1 time unit and
broadcast their threshold signatures and fragments. After another time unit, all honest nodes must
have received at least 2C +1 threshold signatures and fragments for the same root hash. As a result,
each honest node computes the signature and sets ℎ∗, which triggers the delivery of<. �

If an honest node E delivers < despite a Byzantine sender, it is straightforward to show that
each honest node delivers< at most 2 time units later. While the time complexity ofAB86 is lower,
it has a slightly higher space complexity.

Theorem 4.9 (Space complexity). Algorithm AB86 has a space complexity of 5
2 ℓ<0G +$ (=^).

Proof. According to Lemma 4.6, there are at most C honest nodes that send their fragments for
2 root hashes, i.e., there are at least C + 1 honest nodes that only send their fragment once. Thus,
an honest node may store 2C · 2 + (C + 1) · 1 ≤ 5

3= fragments of size 3
2 ℓ<0G /= for a total of 5

3 ℓ<0G .
Algorithm AB86 also utilizes ', containing at most 2 node identifiers of size $ (^) per node, and

(, storing at most 2 signatures of size $ (^) per node. Thus, the space complexity of these data
structures is upper bounded by $ (=^). �

Byzantine Reliable Broadcast with Low Communication and Time Complexity 13

5 PRACTICAL CONSIDERATIONS

In this section, optimizations that may be relevant for practical applications are discussed.
Partially synchronous communication. Byzantine behavior and unpredictable message laten-
cies are often exceptional situations rather than the norm in practice. While both algorithm AB86

andA18C are tailored to the asynchronous communication model, they can easily be adapted to the
partially synchronous model where periods of synchrony are assumed. Given an upper bound 3 on
the message delay that holds for some periods of time, both algorithms can be modified to improve
the communication complexity during these times in the absence of faults. Specifically, the addi-
tional constraint can be introduced that at least X time must have passed since the first fragment
was received before delivering<. The following theorem states the effect of this modification on
the communication complexity of both algorithms for an algorithm-specific X .

Theorem 5.1. If communication is synchronous from the start of the execution for at least X = 33
(X = 23) time, then L(=, C) = 3

2 for the adapted version of A18C (AB86) in the absence of faults.

Proof. As there are no faults by assumption, Theorem 3.6 and Theorem 4.8 imply that all nodes
receive = fragments after at most 33 (23) time in case of algorithmA18C (AB86). Thus, '(ℎ) = + for
the root hash ℎ of <, which entails that the nodes do not disseminate any additional fragments
before delivering, resulting in a communication complexity of (= − 1) |5 | + =(= − 1) |5 | +$ (^=) <

=2 |5 | +$ (^=) ≤ 3
2 |< |= +$ (^=2 log(=)) and thus L(=, C) = 3

2 . �

Naturally, this modification does not improve any theoretical (worst-case) bound because it still
holds that L(=, C) = 2 even for C crash failures but it may prove to be beneficial for real-world
applications where failures are rare nonetheless.
Simplified structure.The second optimization only concernsAB86. Instead of handling fragments
and proposals in separate messages, signatures can be appended to the fragment message. As a
result, nodes only send and process messages of a single type. Fragments and proposals are kept
separate in algorithm AB86 to retain as much similarity to A18C as possible in order to emphasize
the key differences and simplify the presentation. This modification requires the addition of a
simple rule: a node appends its threshold signature as long as ℎ∗ = ⊥ and the signature otherwise,
which can be computed if ℎ∗ ≠ ⊥ according to Algorithm 4. The signature in the message is still
processed as shown in Algorithm 3.
Algorithm 4 dictates that the signature is broadcast before executing the message delivery. This

step can be omitted entirely when adding the rule above without violating any of the reliable
broadcast conditions. Since the signature is broadcast to ensure totality, we briefly argue why this
condition continues to hold. Let E be an honest node that has delivered message< with root hash
ℎ. If all honest nodes broadcast fragments for root hash ℎ at some point, then all honest nodes
will eventually deliver < even if they never receive a signature. On the other hand, if there is at
least one honest node E ′ that never sends a fragment for the right hash, then E ′ ∉ '(ℎ) at node E ,
and thus E must send E ′’s fragment and the signature to E ′. Upon receipt of this message, E ′ will
broadcast its fragment and the signature, ensuring that all honest nodes eventually receive the
signature, i.e., the signature is broadcast anyway in this case.

6 LOWER BOUND

The preceding section showed that an overhead factor of 3
2 for large messages can be attained in

practice under normal network conditions and in the absence of faults. In this section, we shed
light on the question whether we can hope to further improve upon this bound. The question is
answered in the negative, at least for a specific but relevant class of algorithms.

14 Locher

The lower bound holds in the synchronous communication model where all nodes perform some
computation, send messages, and receive the sent messages within the same round of a bounded
and known duration. Furthermore, the lower bounds holds in the crash failure model where a
faulty node stops executing at any point during the execution but it never deviates from the correct
protocol execution until it fails. In order to utilize the available bandwidth efficiently, it is beneficial
to minimize the maximum bandwidth consumption over all nodes. If each node sends the same
amount of data up to a constant factor, the algorithm is called balanced [4]. Any imbalance beyond
a constant factor is usually due to the sender transmitting more data, typically in the first round.
We focus on a broader class of “weakly balanced” algorithms where the sender can send arbitrarily
sized messages to other nodes but at most > (|< |=) bits overall in the first round. Note that each
node sends $ (|< | + ^= log(=)) bits in both A18C and AB86.
We further restrict our attention to reliable broadcast algorithms that, given an honest sender,

guarantee that all honest nodes deliver < after at most 3 (synchronous) rounds. This class of al-
gorithms is interesting because it covers A18C , AB86, as well as other algorithms in the literature
including the algorithm by Cachin and Tessaro.
Formally, a (1, A)-reliable broadcast algorithm is defined as a reliable broadcast algorithm that

sends messages of size at most1 bits in the first round and delivers the message of an honest sender
at all honest nodes within at most A rounds.
Let 1 9 denote the bits (of entropy) that the sender sends to E 9 in the first round according to the

given algorithm in some execution without any failures. As mentioned before, we assume that

=∑

9=1

1 9 ∈ > (|< |=). (1)

Let 18 9 further denote the bits that E8 sends to E 9 in rounds 2, . . . , A in the same execution. Due to
the validity condition and the fact that we consider algorithms with a good-case time complexity
of at most A , all honest nodes must receive < by the end of round A . Let (9 denote the set {E8 ∈

+ | 18 9 > 0}, i.e., the set of nodes that send some bits to E 9 . Moreover, let ' ≔ {E 9 ∈ + | 1 9 ≥ |< |}

denote the set of nodes that receive at least |< | bits in round 1. Since
∑=

9=1 1 9 ∈ > (|< |=), it must

hold that |' | ∈ > (=). Let 1̄ 9 ≔
1

|(9 |

∑=
8=1 18 9 denote the average number of bits sent to E 9 from the

nodes in (9 in rounds 2, . . . , A .
In the following, we consider the case A = 3, which permits a simple strategy to derive a lower

bound due to the fact that a node failing to receive expected messages in the second round can
only inform other nodes about the failure in the third round. Requiring a fourth round to send the
missing bits violates the requirement that all honest nodes deliver the message by round 3 in case
of a non-faulty sender. Therefore, the strategy is simply to mark those nodes as faulty that send
many bits in rounds 2 and 3.
Given this strategy, it is easy to see that |(9 | > C and 1̄ 9 > 0 must hold for any E ∈ + \ ' as

otherwise E 9 may not receive < by the end of round 3. The following lemma provides a lower

bound on 1̄ 9 for the case |(9 | > C .

Lemma 6.1. For all 9 ∈ {1, . . . , =}, |(9 | > C , it must hold that

1̄ 9 ≥ (|< | − 1 9)/(|(9 | − C). (2)

Proof. Note that 1 9 ≥ |< | implies that 1̄ 9 ≥ 0, which holds trivially. Thus, we consider the case

1 9 < |< |. Assume that 1̄ 9 < (|< | − 1 9)/(|(9 | − C) and that the C nodes in (9 that send the largest
number of bits are faulty and never send anything. Let (′9 denote the remaining nodes that send

Byzantine Reliable Broadcast with Low Communication and Time Complexity 15

bits in rounds 2 and 3. In this case, node E 9 receives

1 9 +
∑

E8 ∈(
′
9

18 9 ≤ 1 9 + (|(9 | − C)1̄ 9 < 1 9 + (|(9 | − C) (|< | − 1 9)/(|(9 | − C) = |< |

bits by the end of round 3, which implies that E 9 does not receive the (whole) message. �

The following theorem states the main result that the overhead factor must be at least 3
2 for the

considered class of algorithms as = tends to infinity.

Theorem 6.2. If communication is synchronous and there are C < =/3 faulty nodes, it holds that
L(=, C) ≥ 3

2 for every (> (|< |=), 3)-reliable broadcast algorithm as = → ∞.

Proof. The communication complexity is at least

=∑

9=1

1 9 +

=∑

9=1

=∑

8=1

18 9 ≥
∑

E9 ∈+ \'

=∑

8=1

18 9 =
∑

E9 ∈+ \'

|(9 |1̄ 9

(2)
≥

∑

E9 ∈+ \'

|(9 |
|< | − 1 9

|(9 | − C
≥

∑

E9 ∈+ \'

=

= − C
(|< | − 1 9)

= (= − |' |)
=

= − C
|< | −

∑

E9 ∈+ \'

=

= − C
1 9

(1)
≥ (= − |' |)

=

= − C
|< | − > (|< |=)

=→∞
= =

=

= − =/3
|< | =

3

2
|< |=.

�

7 RELATED WORK

As mentioned in §1, the first reliable broadcast algorithm, achieving a communication complex-
ity of $ (|< |=2), was presented by Bracha [6]. An algorithm with a much improved bound of
$ (|< |= + ^=2 log(=)), based on the use of erasure codes, was published 18 years later by Cachin
and Tessaro [9], making use of collision-resistant hash functions of size ^ . By contrast, Bracha’s
algorithm is error-free, i.e., it does not rely on any cryptographic assumptions.
Subsequently, error-free reliable broadcast algorithms with lower communication complexity

were proposed, guaranteeing bounds of$ (= |< |+=4 log(=)) [23] and$ (= |< |+=3 log(=)) [22].While
the latter algorithm achieves a lower asymptotic communication complexity, it is not balanced in
that a single node, the sender, must transmit more bits than the other nodes. A reliable broadcast
algorithm is said to be balanced if all nodes send the same number of bits up to a constant factor [4].
Note that the algorithms presented in §3 and §4 are both balanced. The best known bound for
error-free algorithms is $ (= |< | + =2 log(=)) [4]. Abraham and Asharov proposed a probabilistic
algorithmwith a similar bound of$ (= |< | +=2 log(=3/Y)), guaranteeing validity but the agreement
and totality properties only hold with probability 1 − Y [1].
It has also been shown how to achieve a communication complexity of $ (= |< | + ^=2) using

only collision-resistant hash functions [11], improving upon the algorithm by Cachin and Tessaro.
The downside of this algorithm is that it is not balanced and it has a higher computational cost.
AlgorithmA18C of §3 falls into the category of reliable broadcast algorithms that rely on collision-
resistant hash functions as well.
There are reliable broadcast algorithms that require other cryptographic primitives. For example,

an algorithm has been proposed that achieves a communication complexity of $ (= |< | + ^=2) but
requires a trusted setup for a public key infrastructure and cryptographic accumulators [22]. This
bound has been improved to$ (= |< | +^= +=2) using threshold signatures [4]. The algorithmAB86

defined in §4 uses threshold signatures to achieve an optimal (good-case) time complexity.
The best known upper bounds, with and without cryptographic assumptions, are almost asymp-

totically tight considering the lower bound of Ω(= |< | + =2) [14]. The algorithms in this paper im-
prove the effective communication complexity for large messages by reducing the constant of the

16 Locher

first term. Moreover, most error-free algorithms, excluding Bracha’s algorithm, and also the algo-
rithms that use more cryptographic tooling than hash functions, have a higher time complexity
than A18C and AB86, the latter of which having an optimal time complexity [3].
Byzantine reliable broadcast has further been studied in a variety of models that differ from the

model used in most related work. There is a probabilistic algorithm based on stochastic samples
that allows each property to be violated with a fixed and small probability [17]. An algorithm for a
model with dynamic membership has also been proposed [16]. There is further work on consistent
broadcast, a variant of reliable broadcast without the totality property, and its applications [7, 25].
Lastly, in an effort to minimize the actual latency and bandwidth consumption, simulations have
been used to show the efficacy when combining Bracha’s algorithm with Dolev’s reliable commu-
nication protocol [13] to disseminate messages reliably in partially connected networks [5].

8 CONCLUSION

The mechanism introduced in this paper lowers the communication complexity of Byzantine reli-
able broadcast for largemessages. The presented algorithms, which utilize this mechanism, further
guarantee near-optimal and optimal bounds on the time complexity while also keeping the space
complexity close to optimal. Asmentioned in §1, numerous applications make use of reliable broad-
cast as a subroutine. Therefore, it may be worthwhile to revisit selected applications to determine
if the techniques introduced in this paper can be used to obtain stronger results.
A fundamental open question is whether a lower communication complexity for large messages,

i.e., a lower overhead factor, can yet be attained, ideally without increasing the time complexity
substantially. We conjecture that the lower bound of 3/2, which has been shown for a specific
class of algorithms, holds more generally, i.e., with one or both of the imposed restrictions lifted.
Deriving a tight bound for the overhead factor is another important avenue for future research.

REFERENCES

[1] Ittai Abraham and Gilad Asharov. 2022. Gradecast in Synchrony and Reliable Broadcast in Asynchrony with Op-

timal Resilience, Efficiency, and Unconditional Security. In Proc. 43rd ACM Symposium on Principles of Distributed

Computing (PODC). 392–398.

[2] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin Tomescu. 2021. Reaching

Consensus for Asynchronous Key Generation. In Proc. 42nd ACM Symposium on Principles of Distributed Computing

(PODC). 363–373.

[3] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. 2021. Good-case Latency of Byzantine Broadcast: A

Complete Categorization. In Proc. 42nd ACM Symposium on Principles of Distributed Computing (PODC). 331–341.

[4] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, and Haibin Zhang. 2022. Balanced

Byzantine Reliable Broadcast with Near-Optimal Communication and Improved Computation. In Proc. 43rd ACM

Symposium on Principles of Distributed Computing (PODC). 399–417.

[5] Silvia Bonomi, Jérémie Decouchant, Giovanni Farina, Vincent Rahli, and Sébastien Tixeuil. 2021. Practical Byzantine

Reliable Broadcast on Partially Connected Networks. In Proc. 41st International Conference on Distributed Computing

Systems (ICDCS). 506–516.

[6] Gabriel Bracha. 1987. Asynchronous Byzantine Agreement Protocols. Information and Computation 75, 2 (1987),

130–143.

[7] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Secure and Efficient Asynchronous Broad-

cast Protocols. In Annual International Cryptology Conference. 524–541.

[8] Christian Cachin and Jonathan A Poritz. 2002. Secure Intrusion-tolerant Replication on the Internet. In Proc. Interna-

tional Conference on Dependable Systems and Networks (DSN). 167–176.

[9] Christian Cachin and Stefano Tessaro. 2005. Asynchronous Verifiable Information Dispersal. In Proc. 24th IEEE Sym-

posium on Reliable Distributed Systems (SRDS). 191–201.

[10] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. 2022. Narwhal and Tusk: A

DAG-based Mempool and Efficient BFT Consensus. In Proc. 17th European Conference on Computer Systems (EuroSys).

34–50.

Byzantine Reliable Broadcast with Low Communication and Time Complexity 17

[11] Sourav Das, Zhuolun Xiang, and Ling Ren. 2021. Asynchronous Data Dissemination and its Applications. In Proc.

ACM SIGSAC Conference on Computer and Communications Security (CCS). 2705–2721.

[12] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-Kogias, and Ling Ren. 2022. Practical

Asynchronous Distributed Key Generation. In Proc. IEEE Symposium on Security and Privacy (S&P). 2518–2534.

[13] Danny Dolev. 1981. Unanimity in an Unknown and Unreliable Environment. In Proc. 22nd Annual Symposium on

Foundations of Computer Science (FOCS). 159–168.

[14] Danny Dolev and Rüdiger Reischuk. 1985. Bounds on Information Exchange for Byzantine Agreement. Journal of

the ACM (JACM) 32, 1 (1985), 191–204.

[15] Sisi Duan, Michael K. Reiter, and Haibin Zhang. 2018. BEAT: Asynchronous BFTMade Practical. In Proc. ACM SIGSAC

Conference on Computer and Communications Security (CCS). 2028–2041.

[16] Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, and An-

drei Tonkikh. 2020. Dynamic Byzantine Reliable Broadcast. In Proc. 24th International Conference on Principles of

Distributed Systems (OPODIS). 23:1–23:18.

[17] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, Dragos-Adrian Seredinschi, and Yann Vonlanthen.

2019. Scalable Byzantine Reliable Broadcast. In Proc. 33rd International Symposium on Distributed Computing (DISC).

[18] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. 2020. Dumbo: Faster Asynchronous BFT

Protocols. In Proc. ACM SIGSAC Conference on Computer and Communications Security (CCS). 803–818.

[19] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. 2021. All You Need is DAG. In Proc.

42nd ACM Symposium on Principles of Distributed Computing (PODC). 165–175.

[20] Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexander Spiegelman. 2020. Asynchronous Distributed Key Genera-

tion for Computationally-Secure Randomness, Consensus, and Threshold Signatures. In Proc. ACM SIGSACConference

on Computer and Communications Security (CCS). 1751–1767.

[21] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The Honey Badger of BFT Protocols. In Proc.

ACM SIGSAC Conference on Computer and Communications Security (CCS). 31–42.

[22] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H Vaidya, and Zhuolun Xiang. 2020. Improved Extension Protocols for

Byzantine Broadcast and Agreement. In Proc. 34th International Symposium on Distributed Computing (DISC).

[23] Arpita Patra. 2011. Error-free Multi-valued Broadcast and Byzantine Agreement with Optimal Communication Com-

plexity. In Proc. 15th International Conference On Principles Of Distributed Systems (OPODIS). 34–49.

[24] Irving S Reed and Gustave Solomon. 1960. Polynomial Codes over Certain Finite Fields. J. Soc. Indust. Appl. Math. 8,

2 (1960), 300–304.

[25] Michael K. Reiter. 1994. Secure Agreement Protocols: Reliable and Atomic Group Multicast in Rampart. In Proc. 2nd

ACM Conference on Computer and Communications Security (CCS). 68–80.

[26] Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and Andrew Miller. 2022. hbACSS: How to Robustly Share

Many Secrets. In Proc. 29th Annual Network and Distributed System Security Symposium (NDSS).

[27] Haibin Zhang and Sisi Duan. 2022. PACE: Fully Parallelizable BFT from Reproposable Byzantine Agreement. In Proc.

ACM SIGSAC Conference on Computer and Communications Security (CCS). 3151–3164.

	Abstract
	1 Introduction
	2 Model
	3 Algorithm
	3.1 Overview
	3.2 Description
	3.3 Analysis

	4 Variant with Threshold Signatures
	4.1 Overview
	4.2 Description
	4.3 Analysis

	5 Practical Considerations
	6 Lower Bound
	7 Related Work
	8 Conclusion
	References

